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In this paper, we propose a method based on deep neural networks to solve obstacle
problems. By introducing penalty terms, we reformulate the obstacle problem
as a minimization optimization problem and utilize a deep neural network to
approximate its solution. The convergence analysis is established by decomposing
the error into three parts: approximation error, statistical error and optimization
error. The approximate error is bounded by the depth and width of the network,
the statistical error is estimated by the number of samples, and the optimization
error is reflected in the empirical loss term. Due to its unsupervised and meshless
advantages, the proposed method has wide applicability. Numerical experiments
illustrate the effectiveness and robustness of the proposed method and verify the
theoretical proof.

©2023 Elsevier Ltd. All rights reserved.

1. Introduction

Obstacle problems are typical variational inequalities of the first kind and have received much attention

due to the wide range of applications. Fig. 1 illustrates the unilateral obstacle problem for an elastic
membrane. Let 2 C R? be a bounded Lipschitz domain with the boundary 9. The obstacle problem
is to find the equilibrium position v of an elastic membrane under the action of the vertical force f. The

membrane is fixed on the boundary 0f2 with the function h and must lie over the obstacle g with ¢ < h on
012. The differential form of the obstacle problem is
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Fig. 1. Membrane over a plate obstacle.

Various numerical methods have been proposed for solving obstacle problems, the vast majority of
which focus on approximation solutions to the weak variational inequality, such as Galerkin least squares
finite element method [1], multigrid algorithm [2], piecewise linear iterative algorithm [3], the first-order
least-squares method [4], the level set method [5], and dynamical functional particle method [6].

Recently, there has been a growing interest in solving differential equations and inverse problems by deep
learning [7—18]. For variational and semi-variational inequalities, deep learning-based solution methods are
less available. In [19], the author converts the original obstacle problem into an equivalent energy functional
minimum problem. The initial and boundary value conditions are transformed into the loss function of the
deep neural network through Lagrange multipliers. In [20], the authors proposed a deep learning-based
method to solve elliptic hemivariational inequalities based on equivalent variational forms and compared
the numerical performance of three different parameter update training strategies. However, these works
mainly focus on computational methods and lack theoretical analysis.

In this work, we propose a deep learning-based approach to solving the obstacle problem. First, a minimal
optimization problem is constructed based on a variational form of the obstacle problem and then solved by
deep learning methods. In particular, we provide a theoretical analysis of the proposed deep learning method
and establish the rate of convergence for a deep neural network with ReLU?® activation functions in the H;
norm. The error of the deep learning method is decomposed into three parts: the approximation error, the
statistical error, and the optimization error. The approximate error is related to the depth and width of the
network, the statistical error is estimated by the sample size of the Rademacher complexity tool, and the
optimization error reflects the experience loss term in numerical experiments. We established upper bounds
on the number of training samples, the depth, and the width of the network to achieve the desired accuracy.
Moreover, numerical experiments illustrate the effectiveness and robustness of the proposed method and
verify the theoretical proof.

This paper is organized as follows. In Section 2, we decompose the error into three components. The
bounds of the approximation error and the statistical error are discussed. The results of the error analysis
are established in the main theorem. Moreover, we also present the pipeline of the optimization algorithm.
In Section 3, three numerical examples are provided to demonstrate the proposed method. In Section 4, we
summarize our work with a short conclusion.

2. Error analysis of obstacle problems

Let V=H'(2)and U={veV:v="hondR}. Wedenote by K={v eV :v>gin 2,v=hondN}
as the set of admissible displacements. Assume that f € Lo (£2), g € W2, (2), h € W2,(92). Problem (1)
can be rewritten in the form of energy minimization,

Findue K: J(u)<Jw), WweK, (2)

where J(v) = a(v,v) — (f,v) with the quadratic form a(v,v) = % [, Vol? da.

2
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The solution of (2) is characterized by the elliptic variational inequality
ue K : /Vu~V(v—u)dx2/f(v—u)dx, Yo e K. (3)
Q Q

Let

£(v) = J(v) +a /Q lg(2) — v(@)]2 d, (4)

where « is a positive constant and [t]; = max{0,¢}. From [21], the unique solution u* of (4) is sufficiently
close to the solution of (2) with sufficiently large o. We relax the constraint of the boundary condition v € U
with a penalty term and have the following minimization problem:

min £(v), (5)

veV

where

1
:5/ |Vv\2dz—/ fvdx—i—oz/[g—v]idx—kﬁ (v — h)?dx,
2 2 0

o0
«a and B are positive constants. In numerical computations, the above L is replaced by the discrete form

‘Q| Z {V DIE — fF(X)v(Xa) + alg(Xi) — U(Xl)ﬁ_]

where {Xk}gzl and {Yk}i\il are i.i.d. random variables drawn from the uniform distributions U(§2) and
U(012), respectively.

2.1. Deep neural network approximation

To approximate the solution, we consider a fully connected feedforward neural network f : R4 — RVND,
which is defined as

fo(x) = x,
fk<X) = O'(k) (kak—l + bk) = O'Ek) ((kak—l + bk)z) , for k=1,...,D—1,
f= fD(X) = Wpfp_1 + bp,

where the weights matrix Wy, = ( (k)) € RVexNe—1 the bias term by, = (b(k)) € RMk and the activation

function o) = ng) € RMk. The trainable parameters W), and by can be updated during training
by the backpropagation algorithm. The activation function introduces nonlinearity, which makes the deep
neural network to be a universal function approximator. We denote by D the depth of the network, by
W = maxg=1, . p {Ny} the width of the network, and by & the set of activation functions. Neural networks
with D, W, @ are defined as N (D, W, &) := {f : the fully connected feedforward neural network with the
depth D, the width W, and the activation function set &@}.

The set P is all neural networks, that is,

P=|J NDOwW,9).
DW,d

Thus, the obstacle problem amounts to finding ug such that

g = arg min £ (vy), (7)

vgE

where 6 = {Wy, b;.c}kD:1 is the collection of trainable parameters.

3
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2.2. Error decomposition
In this section, we consider the error between the approximation ug , and the solution u*. The subscript
of ug , refers to the optimization algorithm A used in training networks. The following lemma divides the

error into three parts [22,23].

Lemma 1. If the fully connected feedforward neural networks are adopted to solve the obstacle problem,
then

2
[ _u*HHl(Q)

2

C2

< 2 (ot fer) - inf i — | )+ 2 5up [£(w) — ()| + £ (ug,) — £ (@) |
u€P ueP N——™—

Eo
pt
Eapp Esta

where c1, co are constants, L is defined in (6) and ug is the optimal solution of L.

Proof. For any u € P, we have
L(ug,) — L (u) R R R R
*ﬁ(u(%ﬁ\) (uf?A) + L (ug,) — L (Tg) + L (o) — L(u)
L(u) = L(w) + L(w) — £ (u")
s[ﬁ() L))+ 250 1£(w) = £(w)| + | (uo,) ~ £ ()]

where we use that L (@lg) — £(@) < 0 in the last step. Since @ can be any element in P, we take the infimum
of w:

£ (o) = £ (%) < inf [£() — £ ()] + 2 5up |£u) — £(u)

~

+ £ (ua) — £ ()|
Now for any u € P, we set v = u — u*, and have
1
Lu* +v) = 7/ (V(u* +v))%dx + a/ lg— (u* +v)]3de —/ fu* 4+ v)dz
2Ja Q Q
+8 (u* 4+ v — h)*dx
BYe;
= %/(Vu*)de+%/(Vv)2d:c+/ Vu* - Vude
/[ (u" + )] dx—/fudx—/fvdx—i—b’/
arz
= L)+ 3lol} + BTl 2oy — o [ fa = uwido

—|—20z/(g—u*)+vdx—|—o¢/ lg — (u* +v)]3dz,
e} 0

where the operator T refers to the trace operator. The last step holds since u* € U. According to g —u* and
g — (u* +v), it can be divided into four cases.
(1) When g —u* >0 and g — (u* +v) >0,
1
Q

4
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(2) When g —u* > 0 and g — (u* +v) <0,
* * 1 2
L™ +v) = L") + S|l + BTV T2 50
— a/ [g — (u* +v)]%dz + a/ v2dz.
2 2
Because of —a [,[g — (u* 4 v)]*dz 4+ a [, v*dx > 0, we obtain

1
L(u* +v) — L(u*) < a/ vidx + §|v|f + BTl 2200,

(7
* * 1
L(u* +v) — L(u*) > 5|v|§ +B1Tv]132(90):
(3) When g —u* < 0 and g — (u* +v) >0,
* * 1 *
£(u* +0) = L) + 5ol + B0 o0y + a/ﬂ[g _ (" +v)]2da.

Hence,

* * 1 2
Llu* +v) — L(u*) < a/ﬂv%lx + S0l + BIToE o),
. W< L2
LG +v) = L) 2 ol + BITo ) o0
(4) When u* — g < 0 and u* +v — g <0,
* _ * 1 2 2
LG +0) = L) + 5ol + BITo 250y
By the above results of four cases, we deduce that, for any u € P,
. . Lo 2
Llu* +v) — L(u*) < 04/9 vz + o} + BITol2a g,
From the Trace theorem and the fact u = u* + v, we have
£(u) ~ £(w7) < (o + exf)llu— [,
where ¢; is a contant and a > 1. On the other hand, we obtain, from Poincaré—Friedrichs-inequality,
* C2 *
L) = L) = Fu =,
where ¢ is also a constant. In summary,
* c *
£ (u) — £ (%) > Zlug, —

and
L(a) — L (u*) < (a+ Ber)lla — o3, -

From

£ (ug,) — £ () < inf [£a) — £ (u")] + 2sup |£(u) ~ L(w)| + [2 (ug,) — E(ag)} ,

we can have the conclusion of the lemma. 0O
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2.8. Approximation error

We denote the dyadic partition of [0,1] by m,
mth 0t <ot 1,

where tz(-l) =q.27 (O <1< 21). The cardinal B-spline of order 3 over 7m; can be written as

3
2l—1 if 3 ol )2
MY =23 () - ®)

for i = —2,...,2"—1. The multivariate case is defined by the product of several univariate cardinal B-splines,
ie.,
d
NP =] Nlﬁj‘?; (z;), i=(i1,...,iq),—3 <i; <2\ (9)
j=1

Here, we consider a special neural network (ReLU® network), which has the activation function o(z) =

ReLU?3, i.e.,
(@) 23, x>0,
o(x) =
0, else.

To present the upper bound of &,,,, we use the same approach as Y. Jiao et al. did in proving Theorem
4.2 of [23]. We omit the proof details of the following lemmas for space reasons (See [24] and Theorem 3.4
of [25]).

I d
Lemma 2. Assume u* € H?, there exists {Oéj}J('Q:l 4 (aj € R) with I > 2 such that

(2-4)° o

* 3 *

W= T NG < 5wl
j=1

H1(%2)

where C is a constant only depend on d.

Lemma 3. The multivariate cardinal B-spline Nl(j) (x) can be implemented exactly by a ReLU® network
with the depth of [logy d| + 2 and the width of 12d.

Theorem 1. Assume ||u*||H1(Q) < ¢3. Then for any given € > 0, there exist an ReLU® network u € P with

d
D < [log, d] + 3, W§12d[cc3—4} ,

€

such that
2
[u* = ullg1 o) <6

where C is a constant depending only on the dimension d.

1
Proof. Combining Lemmas 2 and 3, we have, for € > 0 and o < [W], there exists u € P such that
H

lu —ull g g < e

. d
The depth D and the width W of u satisfy D < [log,d] +3 and W < 12d [C”uJHl — 4} , respectively. [

6
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2.4. Statistical error

In this section, we introduce the Rademacher complexity to bound Est,. Let {X k}fcvzl and {Yk};i/[ﬂ be
ii.d. random variables drawn from the distributions U({2) and U(942), respectively. By applying triangle
inequality, we have

8
]E{Xk’yk}i\/[ .S SUP [L(u Z (XYM 21617;; Li(u) — Lj(u)|,

where
L1(u) = 1/2[2[Exu(e) [[Vul3(X)],

Lo(u) = [2[Ex~uo) [w(X)f(X)],
Ls(u) = BlOL|Ey v (a0yu(Y)?
La(u) = BIORIEy vu(o2) (h(Y))?
Ls(u) = =2B|02|Ey v @oe)u(Y)h(Y)
Lo(u) = o| I [Exy(r) [u(X)?],
L7(u) = =2a|T'|Ex v [u(X)g(X)],
Ls(u) = a|I[Ex ucr[9(X)?],

where I' C 2 with u > g and L, (u) is the discretization corresponding to £;(u).

Definition 1. The Rademacher complexity of a set A C RY is defined as

%(A) = E{gi}lfc\le L sup kaak‘| )

1,--,aNEA N

where {fk}szl are N iid Rademacher variables with P (¢, =1) = P (& = —1) = 1. The Rademacher
complexity of function class F associated with random samples {X k},iv:l is defined as

N
1
R(F) = E{kagk}{cvzl [Sg N kz—:l S (Xk)] ’

By introducing Rademacher complexity, we get the following lemma and then derive the bound of g,
in Theorem 2.

Lemma 4. Assume that
ma (| fllzo ey, 11l 02, lgll sy, Nl o gy IVl 3oy ) < B < 0,
where u € P and B is a constant. Then

B, SR [£1() = Li(w)] < 2B°|2IR(F),

By, SUB |£2(u) — La(u)] < 2BI2R(F),

7
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Bl 3 |6
Bl 3 44
Frxni, g 4o
Bl 3 o)
Bl 3 |4
Bl 3 o)

where

Fi={f:2>R|ueP fla

Fs={f:002 - R|FueP|y,, st. f(x)

f5:7)|6{2a

Fr(u)={f:2 =R, FueP, st f(z)

Nonlinear Analysis: Real World Applications 72 (2023) 103864

_ Eg(u)’ < 2BB?|002|R(Fs),
~ 54@)‘ < 26B2|00|R(Fy),
- 25(u)\ < 4BB|OLIR(Fs),
- 26(@’ < 2aB%|I'|R(Fs),
_ 27(u)‘ < 4aB|I'|R(F7),

—Eg(u)‘ < 2aB| T|R(Fs),

= [|[Vu(x

W2y, F="7,
=u(2)’}, Fi={f:02—-R|-1,01},

Folw)={f: 2 = R,3ueP, st f(z)=ux)},
—u(z)}, Fs={f:00->R|-1,0,1}

Proof. We prove only one of these inequalities. The other inequalities can be proved in a similar way.

E

G, Sp |£2(w) = Lo
N
= |0k Exwuo) (WOT00) = 7 D0 (X
= QB sup |Exue) (u n 2R T (X
1 & 1 &
= B, By 3 ()~ Yt
k=1 N
2| -
< —E N X Xi) —u(X X 1
< N Ex) Egg ((E0) () — u(Xi) £ m)H (10)
_lal -
= B [335; > 6 & (u(X)7(%) —u<Xk>f(Xk>)H (11)
|£2]
< —E,,
<8y, [ ()
+ME su Z{ (u(Xk)f (X))
N {kagk}ivzl ueg — k k
< 2B|2|R (Fa) . (12)
In the previous proof, we used Jensen’s inequality to obtain (10). The Eq. (11) can be deduced from the
definition of & in Definition 1. And (12) holds because the distributions of the two terms are the same. O

Theorem 2. Let N and M be the number of samples in {2 and 012, respectively. And both the depth D and
width W of the network are positive integers. For any e > 0, if

2
N, M = CD*W?(D +log W)(log D + log W) (1) log 1,

8
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then we have
B, v, sup L(u) — L(u)| < €

where P = N (D, W, {ReLUB}) , and C is a constant.
Proof. From (C.7) in [23], we have
1/2 N
<28\fmax{882 log B i=1,2,6,7,8,

and
<28\[max{8 32 log 1=3,4,5,
where H = c4(D + 3)*W?(D + 3 + log((D + SW))) ((34 is a constant). Then,

E{Xk}k LAY, Sup |L(u) — E(UN

() = £ ()]

By, e, sop

<28\/§c5 max { B, 2} ((4+8a)|9 <x)l/z log <67J{V>
(8809 (;’;)/ 0w (%) )

where c¢5 is a constant. Therefore, the conclusion of the theorem holds. [

IN
-

2.5. Main theorem
We present the main result of this paper.

Theorem 3. Assume Eopr = 0 and |[u*|[ ;1) < 3. For any e > 0, if

C d
D < [log, d] + 3, W§12d[c3—4} ,
€

and ug is the minimizer of (7) with numbers of samples
2d+2
1 1
M,N:(Z'() log —,
€ €

then we have

By o, llue =gy < e

Proof. For any € > 0, by Theorem 1, there exists a neural network function @ with depth [log, d] + 3 and
width 12d such that
Eapp = U™ — |1 < e

From Theorem 2, when the number of samples

N 1 N2
M, N = CyD*W?*(D +logW)(log D + log W) <€> logz =Cs <€> log =

9
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we have

gsta - {Xk}k 17{Yk}]w Slelg |£( ) (u)| S €.

Applying the results of Lemma 1, we complete the proof. [

Remark. Although we have established the non-asymptotic convergence rate of the deep learning method,
we do not discuss Epy - In practical calculations, the stochastic gradient descent algorithm (SGD) with mini-
batch is adopted, which gives the deep learning method the advantage of being meshless and unsupervised.
The optimization algorithm is shown in Algorithm 1.

Algorithm 1 Optimization algorithm

Require: The network depth D and width W, the penalty parameters « and 3, the number of samples N
and M, the initial guess of the parameter 6;, the learning rate 7, and the total number of iterations K.
for k=1,2,... K do

Randomly sample a batch {X;}Y, ~ U(2), {Y;}M, ~ U(912).
5= F (X0 (X)),

losso = £ SN | g (Xy) —ug (X0))2,
M 2
lossz = ﬁ Z]‘:1 [ug (Y;) — h(Y5)]”.
Compute L£(6) = loss; +alossy 5 losss .
Update Oxy1 = 0, — nVoL(0k).
end for

Compute loss; = 3 Y [% Vg (X,)|3

3. Numerical examples

In this section, three examples (including a 2D bilateral obstacle problem) are considered to examine the
robustness and effectiveness of our proposed method. We will compare the solutions of deep neural networks
with reference (analytical or numerical) solutions. In each example, a neural network with 8 (or more) hidden
layers and 80 neurons is employed with the activation function of ReLU?. We incorporate layer normalization
into the network and use the Adam optimizer version of the SGD with a learning rate of 5x 10~ to optimize
the loss function. Furthermore, all networks are generated and trained with the Pytorch library [26]. The
whole source code is available at https://github.com/Xingbaji/Obstacle_problem.

Example 1. Consider a 1D obstacle problem

—u" >0 in {2,
u>g in £2,
p P (13)
u'(u—g)=0 in {2,
u=0 on 042,
where 2 = [0,1] and
10022 for 0<z<0.25,
glz) =< 100z(1 —z)—12.5 for 0.25 <z <0.5,
g(l —x) for 0.5 <z <1.0.
The exact solution is
(100 — 50v/2)x for 0 g r < 7
Uexact (¥) = § 100z(1 —2) =125 for ;1o <z <05,
Uexact (1 — ) for 05<z<1.0.

10
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(a) the numerical solution of (13) (b) The bias of numerical solution

Fig. 2. The numerical results of Example 1.

Table 1

The relative error with respect to dif-
ferent sampling number. The sampled
points are fixed on the uniform mesh.

Sampling number Relative error
20 0.47
50 0.35
100 0.14
200 0.067
500 0.035
1000 0.019
10000 0.0042
The loss function is defined as
1 L1 B
Llue) = > {2||Vu0(Xi)||§ +alg(Xi) —ug(Xi))3 | + 5 [ug(0)? + ug(1)?]
=1

where {X k}szl are randomly sampled from 2/(0,1).

In this example, the training data set is divided into mini-batches of size 2000. We typically train the
neural network with 3000 iterations and set the penalty parameters « = = 5000. We evaluate the
performance of our method on a uniform mesh with a grid size of 1073.

Fig. 2(a) shows the numerical result, the exact solution, and the obstacle function. Fig. 2(b) shows the
difference between the numerical solution and the exact solution. In Fig. 3, we plot the evolutions of lossy,
losss, and losss, which are defined in Algorithm 1. The L; error of solution during the training process with
log scale is also reported. All results show that our method converges within 1000 iterations.

In Theorem 3, we give the estimate of statistical error with respect to the number of samples, which needs
10* samples to ensure that the statistical error is less than 10~!. In practice, the numerical results perform
better than the theoretical analysis. Table 1 shows the relationship between relative error and the number
of samples. To ensure the approximation error and the optimization error of these experiments are close,
we use the same neural network architecture with 8 hidden layers and 80 neurons and take 5000 iterations
for all the models. In Fig. 4, we observe that the statistical error is inversely proportional to the number of
samples on the log —log scale. This property is basically consistent with the theoretical analysis. In addition,
our method is unsupervised, which means we can always generate a sufficient number of samples.

Theorem 1 gives the upper bound of the approximation error with respect to the depth and width of the
neural networks. In this experiment, given d = 1 and the exact solution u*, we obtain that the approximation
error is less than 0.01 when D < 3, W < 395. We use 10* samples and take 5000 iterations to ensure sufficient

11
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Fig. 3. The evolutions of loss;, lossy, and lossz. The L; error during the training process with the log scale is plotted in the
right-bottom subfigure.

relative error

10-2

20 50 100 200 500 1000 10000
number of samples

Fig. 4. Relative error vs. number of samples in the log-log scale.

small optimization errors and statistical errors. Table 2 shows the effect of the neural network architecture
(number of layers and neurons). The numerical result with 3 x 320 validates our theoretical analysis. In
practice, the neural network with too many neurons in each layer is usually slower, so we use the neural
network with 8 layers and 80 neurons in each layer as the default model. Furthermore, we can see that our
method is robust with respect to the neural network architecture.

In Table 3, we investigate the robustness of the penalty parameters of our method. We can observe that
our method obtains accurate solutions as long as «, 8 > 1000, which means our method does not require
fine-tuning of penalty parameters, but only needs to select a sufficiently large number.
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Table 2
The relative error with different neural
network architectures.

Layers & neurons Relative error
3 x 40 0.022
3 x 80 0.028
3 X 160 0.010
3 x 320 0.0096
8 x 40 0.009
8 x 80 0.005
Table 3
The relative error with different penalty parameters.
e B Relative error
100 100 0.10
500 500 0.018
1000 1000 0.0074
1000 5000 0.0087
5000 1000 0.0081
5000 5000 0.0051
10000 1000 0.0069
1000 10000 0.0091
10000 10000 0.0065

Example 2. Consider a 2D obstacle problem

—Au>f in 2,
S .
vz . (14)
(—Au—f)u—g)=0 in £,
u=nh on 042,

where 2 := [—2,2]?, f = 0 and the obstacle function

9(z,y) {Vl_’“27 r=ya?+y? <1,
x,Y) =

-1, elsewhere .

The Dirichlet boundary condition is determined from the exact solution

*( ) {Wa ’I"g”f‘*,
R B N VY B s

where 7* ~ 0.6979651482 satisfies (r*)* (1 — In (r*/2)) = 1. And the loss function is

1 N
NZ{we DI~ FCXua(X,) + alg(X,) — (X,

M
UQ )]2

j=1

In this example, we set @« = § = 5000, and train the neural network with 5000 iterations. The batch
size of interior and boundary points are 40000 and 800, In Fig. 5, we present the numerical solution and its
difference from the exact solution. We visualize loss,losss, and losss in Fig. 6. It can be noted that the
proposed method performs well on the boundary and the contact parts. In Fig. 6(a), the loss; is close to 0
except for the contact part, which is consistent with the definition of loss;.
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Fig. 5. Left: The profile of the neural network solution. Right: The difference between the neural network solution and the exact
solution.

(a) lossy (b) lossa (c) losss

Fig. 6. The profiles of loss;(Left), lossy(Middle) and losss(Right).

Example 3. Our method can be extended to the bilateral obstacle problem. We consider a two-
dimensional case that has been reported in [27,28], i.e., 2 = (0,1) x (0,1). Let the lower obstacle g1(z,y) =
—dist((z,y), d12), the upper obstacle go(z,y) = 0.2, h =0, and

300, if (z,y) € S,
flz,y) =< —T0exp(y)k(z), ifx<1-—yand (z,y)¢&S,
15exp(y)k(z), ifx>1—yand (x,y) ¢S,

where S = {(z,y) € 2: ]z —y| <0.1 and x < 0.3},

61, if0<z<1/6,
2(1 — 3a), if1/6 <z <1/3,
ko) = 6= 1/3), if1/3 <z <1/2,
21— 3(x — 1/3)), if1/2 <z <2/3,
6(z — 2/3), if 2/3 <z <5/6,
2(1-3(x—2/3)), if5/6<z<1.
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(b) The lower(red) and upper(blue) coinci-
dence sets.

(a) The numerical solution of example 3.

Fig. 7. The numerical results and the coincidence sets of Example 3. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

The corresponding loss function is

Nz[nw DI~ FCu(X) + onlgr (X)) — u(X)2

3 M
+asfu(Xi) — g2(Xi ME; ))2
=
We take a; = as = 8 = 50000 and train the neural network for 5000 iterations. The batch sizes for
interior and boundary points are 40000 and 800, respectively. Fig. 7(a) shows the approximated solution.
There is no analytical solution for this example, so we display the lower(red) and upper(blue) coincidence
sets in Fig. 7(b), which closely resembles Figure 3 of Example 5.4 in [27].

4. Conclusion

In this work, we propose a method based on deep learning to solve the obstacle problem. By introducing
penalty terms, the original obstacle problem is transformed into a minimizing optimization problem. It
can solve the optimization problem in the framework of neural networks naturally and get an approximate
solution to the obstacle problem. The theoretical analysis of the unilateral obstacle problem is given. The
non-asymptotic convergence rate is constructed by estimating the upper bounds of the depth and width
of the network and the number of training samples required to achieve the expected accuracy. Numerical
examples show that the proposed method is robust with respect to parameters and network structure and
has the advantages of being easy to implement, meshless, and unsupervised. Especially without tedious
fine-tuning, the proposed method can be applied to bilateral obstacle problems, such as Example 3. This
shows that the proposed method can be applied to more complex obstacle problems. In future work, we will
explore the application of deep learning methods to other variational inequalities.
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